Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes
نویسندگان
چکیده
Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA([Ser]Sec) as substrates to generate selenocysteyl-tRNA([Ser]Sec). Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA([Ser]Sec), seryl-tRNA synthetase, O-phosphoseryl-tRNA([Ser]Sec) kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA([Ser]Sec) kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins.
منابع مشابه
Selenocysteine Biosynthesis and the Replacement of Selenocysteine with Cysteine in the Pathway
D.L. Hatfi eld et al. (eds.), Selenium: Its Molecular Biology and Role in Human Health, DOI 10.1007/978-1-4614-1025-6_2, © Springer Science+Business Media, LLC 2012 Abstract The biosynthetic pathway of selenocysteine (Sec), the 21st amino acid in the genetic code, has been established in eukaryotes and archaea using comparative genomic and experimental approaches. In addition, cysteine (Cys) wa...
متن کاملRNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNA(Sec). Its biosynthesis from seryl-tRNA(Sec) has been established for bacteria, but the mechanism of conversion from Ser-tRNA(Sec) remained unresolved for archaea and eukarya. Here, we p...
متن کاملSupramolecular complexes mediate selenocysteine incorporation in vivo.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2,...
متن کاملDivergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase
Selenocysteine (Sec) biosynthesis in archaea and eukaryotes requires three steps: serylation of tRNA(Sec) by seryl-tRNA synthetase (SerRS), phosphorylation of Ser-tRNA(Sec) by O-phosphoseryl-tRNA(Sec) kinase (PSTK), and conversion of O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) by Sep-tRNA:Sec-tRNA synthase (SepSecS) to Sec-tRNA(Sec). Although SerRS recognizes both tRNA(Sec) and tRNA(Ser) species, ...
متن کاملA selenocysteine tRNA and SECIS element in Plasmodium falciparum.
The molecular machinery for incorporating selenocysteine into proteins is present in both prokaryotes and eukaryotes. Although selenocysteine insertion has been reported in animals, plants, and protozoans, known eukaryotic selenocysteine tRNA sequences and selenocysteine insertion sequences are limited to animals and plants. Here we present clear indications of the presence of selenocysteine-tR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007